Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 761: 143213, 2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33162145

RESUMO

Nowadays, there is no direct evidence about the presence of microplastics (MPs) in the atmosphere above ground level. Here, we investigated the occurrence, chemical composition, shape, and size of MPs in aircraft sampling campaigns flying within and above the planetary boundary layer (PBL). The results showed that MPs were present with concentrations ranging from 1.5 MPs m-3 above rural areas to 13.9 MPs m-3 above urban areas. MPs represented up to almost one third of the total amount of microparticles collected. Fourier Transform Infrared Spectroscopy allowed identifying seven types of MPs with the highest diversity corresponding to urban areas. Atmospheric transport and deposition simulations were performed using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Air mass trajectory analyses showed that MPs could be transported more than 1000 km before being deposited. This pioneer study is the first evidence of the microplastic presence above PBL and their potential long-range transport from their point of release even crossing distant borders.

2.
Sci Rep ; 10(1): 6837, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321958

RESUMO

We have analyzed the bacterial community of a large Saharan dust event in the Iberian Peninsula and, for the first time, we offer new insights regarding the bacterial distribution at different altitudes of the lower troposphere and the replacement of the microbial airborne structure as the dust event receeds. Samples from different open-air altitudes (surface, 100 m and 3 km), were obtained onboard the National Institute for Aerospace Technology (INTA) C-212 aircrafts. Samples were collected during dust and dust-free air masses as well two weeks after the dust event. Samples related in height or time scale seems to show more similar community composition patterns compared with unrelated samples. The most abundant bacterial species during the dust event, grouped in three different phyla: (a) Proteobacteria: Rhizobiales, Sphingomonadales, Rhodobacterales, (b) Actinobacteria: Geodermatophilaceae; (c) Firmicutes: Bacillaceae. Most of these taxa are well known for being extremely stress-resistant. After the dust intrusion, Rhizobium was the most abundant genus, (40-90% total sequences). Samples taken during the flights carried out 15 days after the dust event were much more similar to the dust event samples compared with the remaining samples. In this case, Brevundimonas, and Methylobacterium as well as Cupriavidus and Mesorizobium were the most abundant genera.


Assuntos
Microbiologia do Ar , Bactérias , Poeira , África do Norte , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Consórcios Microbianos
3.
Astrobiology ; 19(12): 1490-1504, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31339746

RESUMO

Substrate-atmosphere interfaces in Antarctic geothermal environments are hot-cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection. High-throughput sequencing of small subunit ribosomal ribonucleic acid (SSU rRNA) genes and Life Detector Chip (LDChip) microarray immunoassays revealed different bacterial, archaeal, and eukaryotic composition in the three mats. The mat at 88°C showed the less diverse microbial community and a higher proportion of thermophiles (e.g., Thermales). In contrast, microbial communities in the mats at 2°C and 8°C showed relatively higher diversity and higher proportion of psychrophiles (e.g., Flavobacteriales). Despite this overall association, similar microbial structures at the phylum level (particularly the presence of Cyanobacteria) and certain hot- and cold-tolerant microorganisms were identified in the three mats. Daily thermal oscillations recorded in the substrate over the year (4.5-76°C) may explain the coexistence of microbial fingerprints with different thermal tolerances. Stable isotope composition also revealed metabolic differences among the microbial mats. Carbon isotopic ratios suggested the Calvin-Benson-Bassham cycle as the major pathway for carbon dioxide fixation in the mats at 2°C and 8°C, and the reductive tricarboxylic acid cycle and/or the 3-hydroxypropionate bicycle for the mat at 88°C, indicating different metabolisms as a function of the prevailing temperature of each mat. The comprehensive biomarker profile on the three microbial mats from Cerro Caliente contributes to unravel the diversity, composition, and metabolism in geothermal polar sites and highlights the relevance of geothermal-cold environments to create habitable niches with interest in other planetary environments.


Assuntos
Extremófilos/isolamento & purificação , Fontes Termais/microbiologia , Microbiota/fisiologia , Regiões Antárticas , Biomarcadores/análise , Isótopos de Carbono/análise , Temperatura Baixa/efeitos adversos , Extremófilos/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Temperatura Alta/efeitos adversos , Ilhas , Origem da Vida , Filogenia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação
4.
Astrobiology ; 18(12): 1497-1516, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30070898

RESUMO

High-energy ionizing radiation in the form of solar energetic particles and galactic cosmic rays is pervasive on the surface of planetary bodies with thin atmospheres or in space facilities for humans, and it may seriously affect the chemistry and the structure of organic and biological material. We used fluorescent microarray immunoassays to assess how different doses of electron and gamma radiations affect the stability of target compounds such as biological polymers and small molecules (haptens) conjugated to large proteins. The radiation effect was monitored by measuring the loss in the immunoidentification of the target due to an impaired ability of the antibodies for binding their corresponding irradiated and damaged epitopes (the part of the target molecule to which antibodies bind). Exposure to electron radiation alone was more damaging at low doses (1 kGy) than exposure to gamma radiation alone, but this effect was reversed at the highest radiation dose (500 kGy). Differences in the dose-effect immunoidentification patterns suggested that the amount (dose) and not the type of radiation was the main factor for the cumulative damage on the majority of the assayed molecules. Molecules irradiated with both types of radiation showed a response similar to that of the individual treatments at increasing radiation doses, although the pattern obtained with electrons only was the most similar. The calculated radiolysis constant did not show a unique pattern; it rather suggested a different behavior perhaps associated with the unique structure of each molecule. Although not strictly comparable with extraterrestrial conditions because the irradiations were performed under air and at room temperature, our results may contribute to understanding the effects of ionizing radiation on complex molecules and the search for biomarkers through bioaffinity-based systems in planetary exploration.


Assuntos
Radiação Cósmica/efeitos adversos , Elétrons/efeitos adversos , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Raios gama/efeitos adversos , Biomarcadores/análise , Biopolímeros/análise , Biopolímeros/química , Biopolímeros/efeitos da radiação , Relação Dose-Resposta à Radiação , Haptenos/análise , Haptenos/química , Haptenos/efeitos da radiação , Imunoensaio/métodos , Análise em Microsséries/métodos , Estrutura Molecular
5.
Micromachines (Basel) ; 7(9)2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30404337

RESUMO

While there have been huge advances in the field of biosensors during the last decade, their integration into a microfluidic environment avoiding external tubing and pumping is still neglected. Herein, we show a new microfluidic design that integrates multiple reservoirs for reagent storage and single-use electrochemical pumps for time-controlled delivery of the liquids. The cartridge has been tested and validated with a silicon nitride-based photonic biosensor incorporating multiple optical ring resonators as sensing elements and an immunoassay as a potential target application. Based on experimental results obtained with a demonstration model, subcomponents were designed and existing protocols were adapted. The newly-designed microfluidic cartridges and photonic sensors were separately characterized on a technical basis and performed well. Afterwards, the sensor was functionalized for a protein detection. The microfluidic cartridge was loaded with the necessary assay reagents. The integrated pumps were programmed to drive the single process steps of an immunoassay. The prototype worked selectively, but only with a low sensitivity. Further work must be carried out to optimize biofunctionalization of the optical ring resonators and to have a more suitable flow velocity progression to enhance the system's reproducibility.

6.
Astrobiology ; 11(10): 969-96, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22149750

RESUMO

The Atacama Desert has long been considered a good Mars analogue for testing instrumentation for planetary exploration, but very few data (if any) have been reported about the geomicrobiology of its salt-rich subsurface. We performed a Mars analogue drilling campaign next to the Salar Grande (Atacama, Chile) in July 2009, and several cores and powder samples from up to 5 m deep were analyzed in situ with LDChip300 (a Life Detector Chip containing 300 antibodies). Here, we show the discovery of a hypersaline subsurface microbial habitat associated with halite-, nitrate-, and perchlorate-containing salts at 2 m deep. LDChip300 detected bacteria, archaea, and other biological material (DNA, exopolysaccharides, some peptides) from the analysis of less than 0.5 g of ground core sample. The results were supported by oligonucleotide microarray hybridization in the field and finally confirmed by molecular phylogenetic analysis and direct visualization of microbial cells bound to halite crystals in the laboratory. Geochemical analyses revealed a habitat with abundant hygroscopic salts like halite (up to 260 g kg(-1)) and perchlorate (41.13 µg g(-1) maximum), which allow deliquescence events at low relative humidity. Thin liquid water films would permit microbes to proliferate by using detected organic acids like acetate (19.14 µg g(-1)) or formate (76.06 µg g(-1)) as electron donors, and sulfate (15875 µg g(-1)), nitrate (13490 µg g(-1)), or perchlorate as acceptors. Our results correlate with the discovery of similar hygroscopic salts and possible deliquescence processes on Mars, and open new search strategies for subsurface martian biota. The performance demonstrated by our LDChip300 validates this technology for planetary exploration, particularly for the search for life on Mars.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Técnicas Biossensoriais , Clima Desértico , Consórcios Microbianos , Biomarcadores/análise , Chile , Ecossistema , Marte , Salinidade
7.
Astrobiology ; 11(8): 759-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22007740

RESUMO

Antibody microarrays are becoming frequently used tools for analytical purposes. A key factor for optimal performance is the stability of the immobilized (capturing) antibodies as well as those that have been fluorescently labeled to achieve the immunological test (tracers). This is especially critical for long-distance transport, field testing, or planetary exploration. A number of different environmental stresses may affect the antibody integrity, such as dryness, sudden temperature shift cycles, or, as in the case of space science, exposure to large quantities of the highly penetrating gamma radiation. Here, we report on the effect of certain stabilizing solutions for long-term storage of printed antibody microarrays under different conditions. We tested the effect of gamma radiation on printed and freeze- or vacuum-dried fluorescent antibodies at working concentrations (tracer antibodies), as well as the effect of multiple cycles of sudden and prolonged temperature shifts on the stability of fluorescently labeled tracer antibody cocktails. Our results show that (i) antibody microarrays are stable at room temperature when printed on stabilizing spotting solutions for at least 6 months, (ii) lyophilized and vacuum-dried fluorescently labeled tracer antibodies are stable for more than 9 months of sudden temperature shift cycles (-20°C to 25°C and 50°C), and (iii) both printed and freeze- or vacuum-dried fluorescent tracer antibodies are stable after several-fold excess of the dose of gamma radiation expected during a mission to Mars. Although different antibodies may exhibit different susceptibilities, we conclude that, in general, antibodies are suitable for use in planetary exploration purposes if they are properly treated and stored with the use of stabilizing substances.


Assuntos
Anticorpos/análise , Corantes Fluorescentes , Raios gama , Análise Serial de Proteínas , Voo Espacial , Temperatura , Anticorpos/efeitos da radiação , Anticorpos Imobilizados/análise , Anticorpos Imobilizados/efeitos da radiação , Liofilização , Soluções
8.
Astrobiology ; 11(1): 15-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21294639

RESUMO

The search for unequivocal signs of life on other planetary bodies is one of the major challenges for astrobiology. The failure to detect organic molecules on the surface of Mars by measuring volatile compounds after sample heating, together with the new knowledge of martian soil chemistry, has prompted the astrobiological community to develop new methods and technologies. Based on protein microarray technology, we have designed and built a series of instruments called SOLID (for "Signs Of LIfe Detector") for automatic in situ detection and identification of substances or analytes from liquid and solid samples (soil, sediments, or powder). Here, we present the SOLID3 instrument, which is able to perform both sandwich and competitive immunoassays and consists of two separate functional units: a Sample Preparation Unit (SPU) for 10 different extractions by ultrasonication and a Sample Analysis Unit (SAU) for fluorescent immunoassays. The SAU consists of five different flow cells, with an antibody microarray in each one (2000 spots). It is also equipped with an exclusive optical package and a charge-coupled device (CCD) for fluorescent detection. We demonstrated the performance of SOLID3 in the detection of a broad range of molecular-sized compounds, which range from peptides and proteins to whole cells and spores, with sensitivities at 1-2 ppb (ng mL⁻¹) for biomolecules and 104 to 10³ spores per milliliter. We report its application in the detection of acidophilic microorganisms in the Río Tinto Mars analogue and report the absence of substantial negative effects on the immunoassay in the presence of 50 mM perchlorate (20 times higher than that found at the Phoenix landing site). Our SOLID instrument concept is an excellent option with which to detect biomolecules because it avoids the high-temperature treatments that may destroy organic matter in the presence of martian oxidants.


Assuntos
Anticorpos/imunologia , Exobiologia/instrumentação , Meio Ambiente Extraterreno/química , Dispositivos Ópticos , Planetas , Análise Serial de Proteínas/instrumentação , Voo Espacial/instrumentação , Imunoensaio , Marte , Percloratos/análise , Ultrassom
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...